Rundong Zhou

Curriculum Vitae

Contact Information

Email: rundongz@chalmers.se / r.zhou@student.utwente.nl Office: Meander 211, De Horst 2, 7522 NB Enschede, Netherlands

Research Interests

Ocean turbulence, Geophysical fluid dynamics • Statistical physics, Nonlinear dynamics • Computational mathematics, Spectral methods

EDUCATION

Candidate for Master of Science Chalmers University of Technology Joint with the University of Gothenburg, Department of Physics Major in Complex Adaptive Systems

Erasmus+ Exchange Program August 2023 - June 2024 University of Twente Enschede, Netherlands Placement in the **Physics of Fluids group** Master's thesis supervisor: Dr. Christopher J. Howland and Prof. Detlef Lohse

Bachelor of Applied Science in Engineering Science University of Toronto Major in Engineering Physics Bachelor's thesis supervisor: Prof. Nicolas Grisouard

LIST OF PUBLICATION

Zhou, R. and Grisouard, N. Spectral solver for Cauchy problems in polar coordinates using discrete Hankel transforms. Preprint, 2023. arXiv:2210.09736

HONOURS AND AWARDS

Avancez Scholarship	2022 - 2024
Chalmers University of Technology	
75% tuition fee reduction, increased to $85%$ reduction in the second year fe	or excellency.
Erasmus+ Exchange Travel Grant Chalmers University of Technology & University of Twente €5,500 travel grant in total.	2023 - 2024
Undergraduate Research Fellowship Canadian Institute for Theoretical Astrophysics CAD \$2,000 per month for four months.	2018
Dean's Honor List	2015 Fall, 2016 Fall

Dean's Honor List

University of Toronto Pass with honor, >80% average.

RESEARCH EXPERIENCE

Master's Thesis June 2023 - June 2024 Physics of Fluids group, University of Twente Enschede, Netherlands Supervisor: Dr. Christopher J. Howland and Prof. Detlef Lohse Swirling Kolmogorov flow, modelling ocean turbulent mixing driven by near-inertial waves. Performing instability analysis and direct numerical simulation using Dedalus (Python) and GHOST (Fortran) spectral PDE solver libraries on supercomputers. Understanding the fundamental physical processes, mixing of passive scalar, the energy-helicity cascades, and the fluid structures of the flow via turbulence theory, statistical mechanics, and dynamical systems approaches.

June 2021 Toronto, Canada cGPA 3.28/4

Website: rundong-zhou.github.io

Phone: +46 734809317

expected June 2024

Gothenburg, Sweden

cGPA 4.75/5

cGPA 8.25/10

2022 2024

2020 Fall, 2021 Winter

Bachelor's Thesis Division of Engineering Science, University of Toronto

Supervisor: Prof. Nicolas Grisouard

Developing a novel spectral method for solving the Gross-Pitaevskii equation for Bose-Einstein condensates in polar coordinates. Improving the accuracy of the method and experimenting the method on annulus domains. Experience with computational physics.

Research $Assistant^1$

Department of Physics, University of Toronto

Supervisor: Prof. Nicolas Grisouard

Applying the novel Fourier-Bessel based spectral method using the discrete Hankel transform to various kinds of PDEs under Dirichlet boundary conditions in polar coordinates. Analyzing the boundary-dependent convergence rate of the method and validating the error estimation. Experience with numerical analysis and spectral theorems.

Research Assistant

Department of Mechanical Engineering, University of Ottawa

Supervisor: Prof. Natalie Baddour

Developing a new type of 2-D discrete Fourier transform under Neumann boundary conditions in polar coordinates using Dini series. Validating the discrete orthogonality relation with Hankel-Schläfli integral. Experiences with complex analysis.

Summer Undergraduate Research Program	May - September 2018
Canadian Institute for Theoretical Astrophysics	Toronto, Canada
Experience with data analysis on Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE)	
database.	

Summer Schools & Other Experiences

Summer School in Mathematics

Université Grenoble Alpes, Institut Fourier

Topics in new trends in mathematical fluid mechanics: Mathematical analysis of incompressible fluid flow, Geophysical flows, Theory of water waves, Singular solutions of the Euler or Navier-Stokes equations, etc.

Featured Courses

Toronto: Continuum Mechanics, Computational Physics, Nonlinear Physics, Statistical Mechanics, Groups and Symmetries

Chalmers: Dynamical Systems, Non-equilibrium Processes in Physics Chemistry and Biology, Quantum Field Theory, Artificial Neural Networks

Twente: Advanced Fluid Mechanics, Turbulence, Functional Analysis, Mathematical and Numerical Physics

Programming Skills

Experienced: Languages: Python, Matlab, IAT_EX, Mathematica Libraries: Dedalus, NumPy, Matplotlib, SciPy

Familiar: Languages: C, Fortran, JavaScript, HTML Libraries: HDF5, Pandas

Latest Update: March 4, 2024

September 2020 - April 2021 Toronto, Canada

April 2021 - October 2022

January - April 2022

June 2023

Grenoble, France

 $^{^1\}mathrm{As}$ the continuation of the bachelor's thesis.